Nov 30 - Super Hard

## Reasoning

R1C6 can only be <4>

R7C3 can only be <8>

R9C4 can only be <2>

R9C6 can only be <3>

R1C4 can only be <7>

R5C5 is the only square in row 5 that can be <2>

R5C4 is the only square in row 5 that can be <4>

R5C2 is the only square in row 5 that can be <8>

R8C8 is the only square in row 8 that can be <3>

R8C6 is the only square in column 6 that can be <5>

R7C1 is the only square in row 7 that can be <5>

R7C7 is the only square in row 7 that can be <2>

R2C9 is the only square in column 9 that can be <5>

R1C8 can only be <2>

R1C2 can only be <5>

R3C9 is the only square in column 9 that can be <4>

Intersection of column 3 with block 1. The value <9> only appears in one or more of squares R1C3, R2C3 and R3C3 of column 3. These squares are the ones that intersect with block 1. Thus, the other (non-intersecting) squares of block 1 cannot contain this value.

R2C2 - removing <9> from <1249> leaving <124>

Intersection of column 8 with block 6. The values <59> only appears in one or more of squares R4C8, R5C8 and R6C8 of column 8. These squares are the ones that intersect with block 6. Thus, the other (non-intersecting) squares of block 6 cannot contain these values.

R5C9 - removing <9> from <179> leaving <17>

Squares R4C2<69>, R6C2<19> and R9C2<16> in column 2 form a comprehensive naked triplet. These 3 squares can only contain the 3 possibilities <169>. Since each of the squares must contain one of the possibilities, they can be eliminated from the other squares in the column.

R2C2 - removing <1> from <124> leaving <24>

R8C2 - removing <16> from <1246> leaving <24>

Squares R6C2 and R6C8 in row 6 and R9C2 and R9C8 in row 9 form a Simple X-Wing pattern on possibility <1>. All other instances of this possibility in columns 2 and 8 can be removed.

R2C8 - removing <1> from <167> leaving <67>

R5C8 - removing <1> from <179> leaving <79>

Intersection of block 3 with column 7. The value <1> only appears in one or more of squares R1C7, R2C7 and R3C7 of block 3. These squares are the ones that intersect with column 7. Thus, the other (non-intersecting) squares of column 7 cannot contain this value.

R8C7 - removing <1> from <167> leaving <67>

Squares R2C4, R8C4, R2C5 and R8C5 form a Type-4 Unique Rectangle on <89>.

R2C5 - removing <9> from <3689> leaving <368>

R8C5 - removing <9> from <789> leaving <78>

Squares R2C8 (XY), R2C6 (XZ) and R5C8 (YZ) form an XY-Wing pattern on <9>. All squares that are buddies of both the XZ and YZ squares cannot be <9>.

R5C6 - removing <9> from <69> leaving <6>

R5C1 can only be <1>

R2C6 can only be <9>

R2C4 can only be <8>

R5C9 can only be <7>

R3C1 can only be <3>

R6C2 can only be <9>

R5C8 can only be <9>

R7C9 can only be <9>

R6C5 can only be <5>

R4C2 can only be <6>

R6C8 can only be <1>

R4C5 can only be <9>

R9C8 can only be <6>

R7C5 can only be <7>

R8C9 can only be <1>

R8C3 can only be <4>

R9C2 can only be <1>

R2C8 can only be <7>

R8C7 can only be <7>

R8C4 can only be <9>

R3C5 can only be <6>

R2C1 can only be <2>

R3C7 can only be <1>

R2C5 can only be <3>

R3C3 can only be <9>

R2C7 can only be <6>

R4C8 can only be <5>

R8C5 can only be <8>

R8C2 can only be <2>

R2C3 can only be <1>

R2C2 can only be <4>

R8C1 can only be <6>

## Today's Sudoku Puzzles

All daily items change at midnight GMT (UTC+0).

Note: BrainBashers has a Dark Mode setting.